An Evaluation of Winter Weather Severity in the United States Using the Weather Stress Index

Author(s):  
Laurence S. Kalkstein ◽  
Kathleen M. Valimont
2020 ◽  
Vol 21 (7) ◽  
pp. 1469-1484
Author(s):  
Yafang Zhong ◽  
Jason A. Otkin ◽  
Martha C. Anderson ◽  
Christopher Hain

AbstractDespite the key importance of soil moisture–evapotranspiration (ET) coupling in the climate system, limited availability of soil moisture and ET observations poses a major impediment for investigation of this coupling regarding spatiotemporal characteristics and potential modifications under climate change. To better understand and quantify soil moisture–ET coupling and relevant processes, this study takes advantage of in situ soil moisture observations from the U.S. Climate Reference Network (USCRN) for the time period of 2010–17 and a satellite-derived version of the evapotranspiration stress index (ESI), which represents anomalies in a normalized ratio of actual to reference ET. The analyses reveal strong seasonality and regional characteristics of the ESI–land surface interactions across the United States, with the strongest control of soil moisture on the ESI found in the southern Great Plains during spring, and in the north-central United States, the northern Great Plains, and the Pacific Northwest during summer. In drier climate regions such as the northern Great Plains and north-central United States, soil moisture control on the ESI is confined to surface soil layers, with subsurface soil moisture passively responding to changes in the ESI. The soil moisture–ESI interaction is more uniform between surface and subsurface soils in wetter regions with higher vegetation cover. These results provide a benchmark for simulation of soil moisture–ET coupling and are useful for projection of associated climate processes in the future.


2017 ◽  
Vol 56 (4) ◽  
pp. 863-876 ◽  
Author(s):  
John W. Weatherly ◽  
Mattson A. Rosenbaum

AbstractIncreasing temperatures and changes in precipitation associated with climate change are expected to have increasing impacts on the contiguous United States in the coming decades, including military training and outdoor activities in general. Projections of daily temperature and precipitation from multiple global climate model projections are used to calculate the days with high heat and drought indices, which also indicate heat-related illness and fire risks. The heat stress index [the wet-bulb black-globe temperature (WBGT)] and drought index (Keetch–Byram drought index) are calculated from climate model projections from 1950–99 and 2070–99 and compared with those calculated from observed weather data for stations across the contiguous United States. Significant increases are projected across the southern United States for the days in the high index category above 32.2°C and high drought category. The higher humidity of the southeastern United States contributes to high WBGT as well, while the air temperatures are greatest in the Southwest. The highest WBGT categories occur for the daytime maximum; however, daily minimum WBGTs in the restricting category also are projected for more than 50 days per year in the Southeast. The high drought index is projected to increase across the Great Plains and the central and southern United States, affecting wildfire risks for military and public lands, including large agricultural regions. These projected impacts can be characterized as widespread and severe for large portions of the United States, with expected impacts to military planning, public health and safety, and natural resource management.


2015 ◽  
Vol 7 (2) ◽  
pp. 133-145 ◽  
Author(s):  
Alan W. Black ◽  
Thomas L. Mote

Abstract Winter precipitation can be very disruptive to travel by aircraft and by motor vehicles. Vehicle fatalities due to winter precipitation are considered “indirect” and are not counted in Storm Data, the publication commonly used to evaluate losses from meteorological hazards. The goal of this study is to examine the spatial and temporal characteristics of these indirect transportation fatalities that involve winter precipitation for the period 1975–2011. Motor vehicle fatalities were gathered from the National Highway Traffic Safety Administration’s (NHTSA) Fatality Analysis Reporting System (FARS) database, while aviation fatalities were collected from the National Transportation Safety Board’s (NTSB) Aviation Accident database. Statistical analysis and geographic information systems (GIS) were used to assess the spatial and temporal characteristics of these deaths. Most winter-precipitation-related motor vehicle fatalities occur during the daylight hours. Fatal motor vehicle accident rates are higher than expected in the Northeast and Great Lakes regions, while winter-precipitation-related aviation fatalities are most common in the western United States. Vehicle fatality counts due to winter weather are compared to fatality counts for various hazards from Storm Data to highlight the differences between the datasets. Because of the exclusion of vehicle fatalities, Storm Data underestimates by an order of magnitude the number of fatalities that involve winter weather each year. It is hoped that a better understanding of winter precipitation mortality can be applied in order to reduce fatalities in the future.


Science ◽  
2021 ◽  
Vol 373 (6559) ◽  
pp. 1116-1121 ◽  
Author(s):  
Judah Cohen ◽  
Laurie Agel ◽  
Mathew Barlow ◽  
Chaim I. Garfinkel ◽  
Ian White

Author(s):  
A. Hakam ◽  
J.T. Gau ◽  
M.L. Grove ◽  
B.A. Evans ◽  
M. Shuman ◽  
...  

Prostate adenocarcinoma is the most common malignant tumor of men in the United States and is the third leading cause of death in men. Despite attempts at early detection, there will be 244,000 new cases and 44,000 deaths from the disease in the United States in 1995. Therapeutic progress against this disease is hindered by an incomplete understanding of prostate epithelial cell biology, the availability of human tissues for in vitro experimentation, slow dissemination of information between prostate cancer research teams and the increasing pressure to “ stretch” research dollars at the same time staff reductions are occurring.To meet these challenges, we have used the correlative microscopy (CM) and client/server (C/S) computing to increase productivity while decreasing costs. Critical elements of our program are as follows:1) Establishing the Western Pennsylvania Genitourinary (GU) Tissue Bank which includes >100 prostates from patients with prostate adenocarcinoma as well as >20 normal prostates from transplant organ donors.


Author(s):  
Vinod K. Berry ◽  
Xiao Zhang

In recent years it became apparent that we needed to improve productivity and efficiency in the Microscopy Laboratories in GE Plastics. It was realized that digital image acquisition, archiving, processing, analysis, and transmission over a network would be the best way to achieve this goal. Also, the capabilities of quantitative image analysis, image transmission etc. available with this approach would help us to increase our efficiency. Although the advantages of digital image acquisition, processing, archiving, etc. have been described and are being practiced in many SEM, laboratories, they have not been generally applied in microscopy laboratories (TEM, Optical, SEM and others) and impact on increased productivity has not been yet exploited as well.In order to attain our objective we have acquired a SEMICAPS imaging workstation for each of the GE Plastic sites in the United States. We have integrated the workstation with the microscopes and their peripherals as shown in Figure 1.


Sign in / Sign up

Export Citation Format

Share Document